劉崗,男,漢族,1981年2月出生,中共黨員、九三學(xué)社社員,工學(xué)博士,研究員,博士生導(dǎo)師?,F(xiàn)任中國(guó)科學(xué)院金屬研究所所長(zhǎng)。
2009年7月于中國(guó)科學(xué)院金屬研究所,獲得博士學(xué)位,期間:2007年3月至2008年10月作為聯(lián)合培養(yǎng)研究生在澳大利亞昆士蘭大學(xué)開(kāi)展研究工作。2009年7月加入金屬研究所工作。
主要從事清潔能源轉(zhuǎn)化用新材料與器件研究。在Nature, Joule, PNAS, Adv. Mater., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nat. Commun., Natl. Sci. Rev., Sci. Bull.等期刊上發(fā)表論文190余篇,被SCI引用3.2萬(wàn)次,連續(xù)(2017-2022年)入選全球高被引學(xué)者,獲授權(quán)專利33件。
主持了國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目、973計(jì)劃項(xiàng)目課題,國(guó)家自然科學(xué)基金委杰出青年科學(xué)基金項(xiàng)目、優(yōu)秀青年科學(xué)基金項(xiàng)目、重點(diǎn)項(xiàng)目以及重點(diǎn)國(guó)際合作研究項(xiàng)目等十余項(xiàng)。入選首批國(guó)家級(jí)人才計(jì)劃-青年拔尖人才,入選國(guó)家級(jí)人才計(jì)劃-科技創(chuàng)新領(lǐng)軍人才;獲國(guó)家自然科學(xué)獎(jiǎng)二等獎(jiǎng)(第一完成人)、科學(xué)探索獎(jiǎng)(新基石科學(xué)基金會(huì))、中國(guó)青年科技獎(jiǎng)、中國(guó)科學(xué)院青年科學(xué)家獎(jiǎng)、全國(guó)百篇優(yōu)秀博士學(xué)位論文獎(jiǎng)等十余項(xiàng)學(xué)術(shù)獎(jiǎng)勵(lì);為英國(guó)皇家化學(xué)會(huì)會(huì)士。
兼任中國(guó)材料研究學(xué)會(huì)青年工作委員會(huì)及先進(jìn)陶瓷分委員會(huì)副主任、中國(guó)可再生能源學(xué)會(huì)光化學(xué)專委會(huì)副主任,Wiley出版集團(tuán)MetalMat、EcoEnergy副主編。
簡(jiǎn)歷:
1999.9-2003.7 吉林大學(xué) 材料物理專業(yè) 學(xué)士
2003.9-2009.5 中國(guó)科學(xué)院金屬研究所 材料學(xué) 博士
2007.3-2008.10 澳大利亞昆士蘭大學(xué) 聯(lián)合培養(yǎng)
2009.7-2012.7 中國(guó)科學(xué)院金屬研究所 “葛庭燧獎(jiǎng)研金”獲得者
2012.8-2014.9 中國(guó)科學(xué)院金屬研究所 項(xiàng)目研究員
2014.10-至今 中國(guó)科學(xué)院金屬研究所 研究員
研究領(lǐng)域:
太陽(yáng)能光催化材料
新型太陽(yáng)能電池
承擔(dān)科研項(xiàng)目情況:
自2009起作為項(xiàng)目(課題)負(fù)責(zé)人承擔(dān)了來(lái)自國(guó)家自然科學(xué)基金委青年基金、面上項(xiàng)目、優(yōu)秀青年基金以及國(guó)際(地區(qū))合作與交流項(xiàng)目,科技部973計(jì)劃課題,國(guó)家高層次人才特殊支持計(jì)劃,中國(guó)科學(xué)院知識(shí)創(chuàng)新工程重點(diǎn)方向性項(xiàng)目課題、太陽(yáng)能行動(dòng)計(jì)劃課題以及前沿科學(xué)研究重點(diǎn)計(jì)劃項(xiàng)目(拔尖青年科學(xué)家類別),英國(guó)皇家學(xué)會(huì)-牛頓高級(jí)學(xué)者基金等項(xiàng)目多項(xiàng)。同時(shí)作為項(xiàng)目骨干參加了國(guó)家自然科學(xué)基金委重大項(xiàng)目、重點(diǎn)項(xiàng)目,作為中方合作者參加了國(guó)家自然科學(xué)基金委海外及港澳學(xué)者合作研究基金(2+4年期)項(xiàng)目。
重要科研成果:
光催化效率是由光催化材料的光吸收、光生電荷的分離轉(zhuǎn)移及表面催化等三方面的特性協(xié)同決定的,深入理解并有效調(diào)控這些特性能為設(shè)計(jì)與構(gòu)建高效太陽(yáng)能轉(zhuǎn)換用光催化材料提供科學(xué)依據(jù)和關(guān)鍵支撐。以典型半導(dǎo)體光催化材料為研究對(duì)象,針對(duì)控制光催化材料效率的關(guān)鍵科學(xué)問(wèn)題開(kāi)展了深入的系統(tǒng)性研究,在實(shí)現(xiàn)寬光譜吸收、提升光生電荷的分離轉(zhuǎn)移能力和晶面調(diào)控催化活性等方面取得了系列進(jìn)展。
寬光譜吸收
致力于通過(guò)引入電子結(jié)構(gòu)修飾劑(異質(zhì)原子或缺陷)來(lái)增加寬帶隙半導(dǎo)體材料的可見(jiàn)光吸收,從而更加充分地利用太陽(yáng)光,特別關(guān)注如何通過(guò)控制修飾劑的空間分布來(lái)實(shí)現(xiàn)光吸收邊的帶對(duì)帶紅移。同時(shí)探索未知的具有寬譜強(qiáng)可見(jiàn)光吸收的光催化材料,且構(gòu)成元素地殼儲(chǔ)量豐富,拓展寬光譜吸收光催化材料庫(kù)。
Figure 1 Homogeneous N doping in Cs0.68Ti1.83O4. The left panel: UV-visible absorption spectra of (1) homogeneous N doped Cs0.68Ti1.83O4 and (2) surface N doped TiO2. The right panel: optical photograph of Cs0.68Ti1.83O4 samples before and after homogeneous N doping. (Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates, Chem Mater 2009, 21, 1266-1274)
Figure 2 Homogeneous S doping in g-C3N4. The left panel: schematic of two lattice N sites for substitutional S in perfect graphitic carbon nitride. The right panel: a typical time course of hydrogen evolution from water containing 10 vol% triethanolamine scavenger by Pt-deposited g-C3N4 (a) and g-C3N4-xSx (b) under λ > 300 and 420 nm. (Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4, J Am Chem Soc 2010, 132, 11642-11648)
Figure 3 A red anatase TiO2 with a gradient B/N doping. The left panel: optical photograph of the prepared red TiO2 sample. The right panel: UV-visible absorption of the white TiO2 and red TiO2. (A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ Sci 2012, 5, 9603-9610)
Figure 4 Homogeneous modification with nitrogen vacancies in g-C3N4. The left panel: schematic of the two dimensional sheets of pristine g-C3N4 (melon). The right panel: UV-visible absorption spectra of g-C3N4 and g-C3N4-x (obtained by reducing g-C3N4 in a hydrogen atmosphere). (Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies, Adv Mater 2014, 26, 8046)
Figure 5 Homogeneous amorphization of g-C3N4. The left panel: schematic of the two dimensional sheets of disordered pristine g-C3N4. The right panel: UV-visible absorption spectra of g-C3N4 and amorphous C3N4 (obtained by heating g-C3N4 in an argon atmosphere). (An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation, Adv. Mater., 2015, 27, 4572)
Figure 6 α-S photocatalyst. The left panel: UV-visible absorption spectrum of α-sulfur. The inset is a photograph of the α-S crystal powder. The right panel: Applied potential bias dependence of the photocurrent generated by the photoanode of α-S crystals under UV-visible and visible light irradiation. (α-sulfur crystals as a visible light active photocatalyst, J Am Chem Soc 2012, 134, 9070-9073)
Figure 7 β-boron photocatalyst. The left panel: schematic of atomic structure of β-boron. The right panel: UV-visible absorption spectra of boron powder with and without surface amorphous layer (Visible-light-responsive β-rhombohedral boron photocatalysts, Angew Chem Int Ed 2013, 52, 6242-6245)
提升光生電荷的分離轉(zhuǎn)移能力
致力于通過(guò)降低光催化材料在某一個(gè)或兩個(gè)方向的尺寸至納米量級(jí),從而縮短光生載流子從體相擴(kuò)散至表面所經(jīng)歷的路徑,進(jìn)而降低光生電子空穴的復(fù)合幾率,提高光催化活性;通過(guò)選擇性組合具有合適特性的組元來(lái)構(gòu)筑具有優(yōu)異空間電荷分離功能的異質(zhì)結(jié)構(gòu)。
Figure 8 g-C3N4 nanosheets. SEM images of bulk g-C3N4 and g-C3N4 nanosheets (Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv Funct Mater 2012, 22, 4763-4770)
Figure 9 Photoanode of Ta3N5 nanorod arrays. SEM image of Ta3N5 nanorod arrays supported on Ta substrate and photoelectrochemical water oxidation activity of Co(OH)x modified Ta3N5 (Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting, Chem Commun 2013, 49, 3019-3021)
Figure 10 TEM images of (a) pristine g-C3N4 and (b) porous g-C3N4 photocatalysts after loading Au particles (black particles) via a photodeposition method. The spatial distribution of Au particles on photocatalysts shows the abundance of reductive sites. Scale bars are 50 nm. (Selective breaking of hydrogen bonds of layered carbon nitride towards greatly enhanced visible light photocatalysis, Adv. Mater., 2016, 28, 6471–6477)
Figure 11 CdS/ZnS core-shell particles. The left panel: schematic of CdS-mesoporous ZnS core-shell particles with the separation of charge carriers. The middle and right panels: photocatalytic hydrogen generation with ZnS, CdS, and the core-shell particles from the aqueous solution of Na2S/Na2SO3 under visible light. (CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light, Energy Environ Sci 2014, 7, 1895–1901)
Figure 12 TaB2/Ta2O5 core/shell particles. The left panel: schematic of a TEM image of TaB2/Ta2O5 core/shell particles with a function of promoting the separation of photoexcited electrons and holes. The right panel: band alignment of Ta2O5 referring to Fermi level of TaB2 and Pt as co-catalyst. (Constructing metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution, Adv Energy Mater 2014, 4, 1400057)
Figure 13 Comparison of photocatalytic hydrogen generation from mixture of water/methanol with pristine rutile TiO2 and Ti3+/Ti4+ core/shell rutile TiO2 particles after loading 1 wt% Pt co-catalyst. (Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2, Adv. Mate., 2016, 28, 5850-5856)
晶面調(diào)控催化活性
致力于通過(guò)控制晶體生長(zhǎng)過(guò)程中不同晶面的選擇性暴露,實(shí)現(xiàn)對(duì)光催化材料的表面原子結(jié)構(gòu)的有效調(diào)控,研究表面結(jié)構(gòu)-光催化活性的關(guān)聯(lián)規(guī)律,為基于晶面控制設(shè)計(jì)高性能光催化材料打下基礎(chǔ)。
Figure 14 N doped anatase TiO2 crystal with dominant {001} facets. UV-visible absorption spectrum of nitrogen doped anatase TiO2 crystals with dominant {001}. The insets are optical photograph and SEM image of nitrogen doped anatase TiO2 crystals with dominant {001}. (Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN, J Am Chem Soc 2009, 131, 12868-12869)
Figure 15 Anatase TiO2 crystals with a predominance of low index facets. Schematic (A) and SEM images (B-D) of anatase TiO2 single crystals with different percentages of {001}, {101}, and {010} facets. (On the true photoreactivity order of {001}, {010} and {101} facets of anatase TiO2 crystals, Angew Chem Int Ed 2011, 50, 2133-2137)
Figure 16 {001} dominated Anatase TiO2 microspheres with tunable spatial distribution of boron. The left panel: SEM images of anatase TiO2 microsphere with nearly 100% {001} surface. The right panel: schematic of boron distribution in the microsphere before and after heating. (Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv Funct Mater 2012, 22, 3233–3238)
Figure 17 Ferroelectric field assisted selective deposition of co-catalysts on different sides of facet. (a) Schematic of single-domain & single crystalline ferroelectric material with in-built electric field; (b) SEM image of PbTiO3 nanoplates with dominant {001} facets; (c) SEM image of PbTiO3 nanoplates with a selective depositionof Au and MnOx on different sides; (d) Comparison of photocatalytic hydrogen generation between the PbTiO3 with the selective deposition of reducing co-catalyst Pt and the PbTiO3 with the nonselective deposition of reducing co-catalyst Pt. (Selective Deposition of Redox Co-catalysts to Improve the Photocatalytic Activity of Single-Domain Ferroelectric PbTiO3 Nanoplates, Chemical Communications 2014, 50, 10416 -10419)
Figure 18 Crystal facet dependent interfacial electric conductivity in faceted anatase TiO2 crystal. I-V curves along different crystallography orientations were measured by contacting one TiO2 particle with two tungsten probes in SEM microscope. (Greatly enhanced electronic conduction and lithium storage of faceted TiO2 crystals supported on metallic substrates by tuning crystallographic orientation of TiO2, Adv. Mater., 2015, 27 3507–3512)
聲明:化學(xué)加刊發(fā)或者轉(zhuǎn)載此文只是出于傳遞、分享更多信息之目的,并不意味認(rèn)同其觀點(diǎn)或證實(shí)其描述。若有來(lái)源標(biāo)注錯(cuò)誤或侵犯了您的合法權(quán)益,請(qǐng)作者持權(quán)屬證明與本網(wǎng)聯(lián)系,我們將及時(shí)更正、刪除,謝謝。 電話:18676881059,郵箱:gongjian@huaxuejia.cn